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Chapter 1

Introduction

In recent years, researchers in electromagnetics have expended considerable effort

capitalizing on computational advances made possible by new developments in computer

technology. These advances have made it easier to develop highly efficient, specialized

computer codes for many scattering or radiation problems. However, because of the high

cost of developing a code for each specialized geometry, it has increasingly become more

cost effective to use possibly less efficient, but more general purpose codes which apply to

a broader class of problems.

Most general purpose codes employ an integral equation formulation which is solved

by the method of moments/JlJ. Under this type of formulation, the structure geometry

is usually modeled either as a wire mesh or as a surface subdivided into discrete planar

patches. The wire grid geometry modeling approach has been successfully used where

primarily far field quantities such as RCS or radiation patterns are of interest. Principal

advantages of the wire grid approach are that the geometry is easily specified for computer

input, and only one-dimensional integrals need be numerically evaluated in the method of

moments. The wire grid modeling approach, however, often proves unsatisfactory where

near field quantities such as surface currents or input impedance are desired. One obvious

difficulty is in interpreting computed wire currents as equivalent surface currents. Also,

however, the storage of energy in the neighborhood of a wire mesh is not completely
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equivalent to that of a continuous surface. As a result, computed resonant frequencies and

reactive components of computed impedances are often shifted from their correct values.

Most of the difficulties involved in wire grid modeling may be overcome by surface patch

modeling, and several such approaches have been developed. One well-tested scheme [2]

makes use of the electric field integral equation (EFIE) formulation and a triangular surface

patch modeling approach to represent the geometry. There are two principal advantages

of this combination:

1. The EFIE formulation, in contrast to the magnetic field integral equation (MFIE),

applies to open structures, and it allows voltage and load conditions to be easily

specified at terminals defined on the structure.

0 2. Triangular patches are the simplest planar surfaces which can be used to model

arbitrary surfaces and boundaries, and they permit patch densities to be varied

locally so as to model a rapidly varying geometry or current distribution.

A disadvantage of the EFIE approach, however, is that the resulting integral equation

contains both a singular kernel and derivative operators. These features require that an

algorithm based on the EFIE formulation must be developed carefully to ensure that it is

both accurate and numerically stable.

In this report, we extend the approach of [2] to develop a procedure for analyzing

an arbitrary configuration of conducting wires and bodies. An important feature of the

algorithm developed is its ability to handle wire-to-wire, surface-to-surface, and wire-to-

surface junctions. Numerous applications requiring these modeling capabilities exist. For

example, many practical antennas are formed by attaching some thin wire configuration

to a conducting body, and exciting the resulting structure by maintaining a potential

difference between the wire and conducting body at the attachment point. Often, the

shape or electrical size of the conducting body is such that it cannot be treated as an
8
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infinite ground plane. Examples of such structures include automobile radio antennas and

wire antennas for shipboard communications. In both applications, the vehicle supporting

the antenna has a complicated geometry whose physical dimensions are only on the order

of a wavelength at the frequency of operation.

Several approaches to specific wire/body junction problems have been reported in the

literature. Bolle and Morganstern [3] numerically solved the classically formulated case

of a monopole protruding from a small sphere by considering it to be the limiting case of

a conical antenna. Tesche and Neureuther[4] found current distributions on a monopole

mounted on a conducting sphere by using the Green's function for the electric field pro-

duced by a point source in the presence of the sphere. Tsai [5] solved the problem of a

monopole attached to spheres and cylinders based on a Fourier transform solution for the

wire and the equivalence principle for the body. Cooper [6] measured current distributions

and input impedances of monopoles attached to conducting cylinders. Albertsen et al. [7]

determined radiation patterns for wires attached to a circular cylinder modeled by quadri-

lateral patches. Their formulation was based on the EFIE formulation for wires and the

magnetic field integral equation (MFIE) for the cylinder. Shaeffer, Medgyesi-Mitschang

and Putnam [8,9,10] have treated wires attached to bodies of revolution and to finite

cylindrical bodies. Richmond [11] solved the problem of a monopole antenna mounted at

the center of a circular disk by using the piecewise-sinusoidal Galerkin moment method.

Marin and Catedra [12] used hybrid moment method/GTD techniques to treat a monopole

mounted off-axis on a circular disk.

None of the above procedures treat wires mounted on a surface at an edge or vertex.

Stich problems seem to require an a priori knowledge of the form of the surface current

distribution near the junction. This information usually must be determined by obtaining

a Green's function associated with the specific junction configuration. Glisson and Wilton

[13,14] determined this distribution for an edge by analyzing a semi-infinite current filament
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attached to a conducting wedge. The derived distribution was used together with an EFIE

formulation to treat a bent rectangular plate with an arbitrarily oriented wire attached

to the plate at the bend. Newman and Pozar [15] treated the same problem by a similar

procedure, later extending it to treat a wire attached to a plate at or near a knife edge [17]

or at a bend [18].

To our knowledge, none of the above authors attempted to treat wires attached to ar-

bitrarily shaped vertices on conducting bodies, presumably because Green's functions for

arbitrary vertex geometries are unavailable. Rao [19], however, attempted to treat the ar-

bitrary vertex attachment problem by numerically determining the variation of the current

near an arbitrary junction at an edge or vertex. However, his approach was found to be

ill-conditioned due to a near linear dependency in the basis functions associated with the

wire junction and the neighboring surface patches. Costa and Harrington [20,21] closely

followed Rao's approach, but eliminated the dependency in the basis functions. They im-

plicitly assumed that for a junction of any geometrical configuration, only a junction basis

function with a 1/r variation is needed to represent the surface current at the attachment

point. They reasoned that basis functions on the surface would account for any angular

variation of the junction current. Their approach is appealing because of its simplicity and

generality.

In this work, we use the approach of Costa and Harrington-with a modification in the

potential computations to increase the numerical efficiency-and apply this procedure to

wire-to-surface junctions of arbitrary geometry. The problem of modeling arbitrary wire-

to-surface junctions is the least well understood portion of the present analysis, and hence

particular emphasis is placed here on validating numerical results from such proulems.

Unfortunately, bounds on computer resources limit our study to structures whose largest

electrical dimensions are only a few wavelengths. Furthermore, very few measurements or

computed results involving antennas attached to edges or vertices may be found in the
1
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* literature, and hence we make use of some indirect methods for validation of the results.

In Chapter 2, the forn~ulation of the electric field integral equation for an arbitrary con-

figuration of wires and conducting bodies is given. Current expansion functions and testing

procedures are introduced in Chapter 3 to convert the integral equation into a matrix equa-

tion for numerical solution. Numerical results for a wide variety of wire-to-surface junction

problems are presented in Chapter 4. Numerical examples are given illustrating the calcu-

lation of current distribution, charge density, input impedance, and far field patterns for

various junction configurations including wires mounted on smooth surfaces, edges, and

vertices. A brief summary of the research reported here is found in Chapter 5. Detailed

derivations of the numerical methods used to compute the potential integrals required

in the numerical procedure are given in appendices. A computer program, JUNCTION,

based on the numerical procedures of this report has been developed and is described in

[22].
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Chapter 2

Electric Field Integral Equation
Formulation

In this chapter the equivalence principle is used together with boundary conditions on

conducting bodies and wires to derive the electric field integral equation (EFIE).

2.1 Equivalence Principle

Consider a perfectly conducting body which is placed in a homogenous medium (p, e)

and whose surface is denoted by S with unit normal vector fi. The body is illuminated

by an incident or impressed field (E', H') due to impressed electric and magnetic current

sources J and M', respectively. (The incident field (E', H') is defined to be that which

would exist in space if the body were not present.) The incident field induces a surface

current on the conductor and this current in turn radiates scattered fields (E', 'W). The

* total field exterior to the body, (E, H), is a superposition of the incident field and the

scattered field (i.e., E = E' + Es , H = H' + H'). The induced surface current is related

to the surface tangential magnetic field (J = fi x H), but is unknown. Our task is to

*" derive an integral equation for the induced surface current. If the integral equation can be

solved for this current, all other electromagnetic quantities may be determined from it.

We invoke the equivalence principle [23] to allow the metal conductor to be removed and

0
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replaced by a system of currents radiating in free space such that the fields produced are

identical to those of the original problem. The steps to generate this equivalent situation

are:

1. First the conducting body is removed and the resulting void is filled with the same

material as the surrounding medium.

2. On the mathematical surface S previously corresponding to the conducting body,

we place an electric surface current Jq and a magnetic surface current M.q. These

currents are required to produce the same fields as in the original problem; therefore,

they are called equivalent currents, and they are the sources of the scattered field

3. The impressed currents as well as the equivalent currents now radiate in an infinite

homogeneous medium and the fields produced by these currents can be determined

by superposition (or equivalently, by means of potential representations of the fields).

4. We specify the exterior fields to be that of the original problem (so Et. = 0 on S).

We also specify the field interior to S to be zero.

5. The equivalent magnetic current must support any discontinuity in electric field at

S, but since the tangential electric field is zero on both sides of S, the equivalent

magnetic current M., must be zero. Since the interior magnetic field is zero, the

equivalent electric current is identical to the actual surface current J on the conduc-

tor.

The correctness of the equivalent model can be easily verified by checking to see that all the

postulated fields satisfy Maxwell's equations, including the jump discontinuity conditions.

The above argument permits us to assert that the scattered fields due to currents on

13
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conductor surfaces can be computed from potential integrals as if the currents were in an
infinite homogeneous medium. This fact will be used in the next section.

At this point the surface current J is unknown because we do not know the scattered

fields on the exterior of S. Since the equivalent current radiates in an infnite homogeneous

medium, however, we may express the scattered fields produced by J in terms of potential

integrals, and enforce boundary conditions on S to obtain an equation from which J may

be determined.

2.2 Coupled Electric Field Integral Equation

The previous section provides a scheme for determining fields if the induced surface

currents are given. The task now is to derive an integral equation for determining theS
currents.

Let S denote a configuration of perfectly conducting surfaces immersed in an incident

electromagnetic field. In general, S may consist of a collection of conducting bodies and

wires. The wires may be connected to smooth surfaces, edges, or vertices on the bodies,

forming different junction configurations as shown in Fig. 2.1. S is then to be viewed as

the union of the bodies and the wires, which can be expressed as follows:

S =SB USW = [ SB] u [ swi] (2.1)

where Nb and N, are the number of bodies and the number of wires, respectively. The

wire radii may vary but are always assumed to be small compared to the wavelength,

thus eliminating the need to consider any circumferential variation or components of wire

currents.

An electric field E', defined to be the field due to an impressed source in the absence

of S, is incident on and induces a surface current J and total current I on SD and Sw,

respectively. A pair of coupled integral equations for the configuration of wires and bodies

14

0I . .. . .. , ,"



I

Figure 2.1: Typical wire/surface configuration may consist of a collection of conducting
bodies and wires. The wires may be connected to smooth surfaces, edges, or vertices on

, the bodies, forming different junction configurations.
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may be derived by requiring the tangential component of the electric field to vanish on

each surface. Thus we have

-a = (jwA + VO),t, r on S (2.2)

where

A = [J.dS+J) +ekRdS'], (2.3)

1t Fr eijkR rS 1 dl e-ikR d?1(24
4'=-j4rwe [ ISa V J--dS' IS, 27ra(I) W eRd] (24

and R = Ir - r'l is the distance between an arbitrarily located observation point r and

a source point r' on S. In (2.3) and (2.4), k = , where A is the wavelength, P and e are

the permittivity and permeability, respectively, of the surrounding medium, t' is the arc

length along the wire axis, and a is the radius of the wire. Eqs. (2.2)-(2.4) constitute the

EFIE for the unknown surface currents J and wire currents . Because of the thin wire

assumption, we further assume that only components of electric field parallel to the wire

axis need satisfy (2.2). In the following chapter, the EFIE is approximated by a matrix

equation for computer solution.
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Chapter 3

Numerical Procedures

In this chapter, a procedure for the numerical solution of the electric field integral

equation is developed. Basis functions are chosen to represent the unknown currents,

testing functions are chosen to enforce the integral equation, and these are used to derive

a matrix approximant to the integral equation.

3.1 Development of Basis Functions

In order to determine the current distribution J, we must first represent it in a form

that is convenient for numerical computation. In this section we discuss three sets of basis

functions which may be used to represent the current induced on bodies, wires, and in the

neighborhood of wire-to-surface junctions. It is required that the basis functions be linearly

independent and capable of approximating the actual surface current. A triangular patch

model of SB and a linear tubular segment model of Sw is assumed (c.f. Figs. 3.1 and 3.2).

Basis functions suitable for representing currents induced on SB and Sw are given by

A (r) P 9 yn- =- B or W ,r in P* .)

0 , otherwise

where, as illustrated in Fig. 3.3, S*, -y = B (W), is the ± reference triangle (segment)

attached to the nth non-boundary edge (node) of a body (wire). The height (length)

17
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of Sn relative to the nth edge (node) of S.,7 = B (W) is h?, and p' is (±1)x(the

vector from the free vertex (node) of S to r). The surface divergence of A'(r), which is

proportional to the linear charge density associated with this basis function, is2
2,f= rin S!

V. a"(r) = 1 (3.2)

"nhw-- =W ,rinS:*

0 , otherwise.

Finally, we define a basis function associated with wire junctions on SB. A wire-to-

surface junction is assumed to exist only at a triangle vertex. Referring to Fig. 3.4, the

vector basis function associated with the nth junction is

iK., 1 - "" 2 AB(r) , in Sn
a(,(,) - h'3.23

AJ(v) AW(r) ,r in SJ -  (33)

0 , otherwise,

where the double index nI refers to the lth triangle, SJ , at the nth junction (c.f. Fig. 3.4).

AZt(r) and h"+ are the previously defined body basis function and the vector height,

respectively, associated with the edge opposite the junction vertex in J+ The total flux

from the junction triangles into the wire is normalized to unity if we choose

ant ant (3.4)K n I = - -W - = -£ n~
InI ant

where ant is the angle between the two edges of $ t+ common to the nth junction vertex,

e I is the length of the edge opposite the junction in an is the sum of the nth

junction vertex angles. Njn is the number of patches attached to the nth junction. We

list here some of the properties which make this basis function suited for representing the

current in the neighborhood of a junction:

20
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1. The radially directed basis function has a 1/Ip' magnitude variation in the neigh-

borhood of the junction vertex. It can be shown that the current has this radial

variation in the neighborhood of a thin wire junction regardless of the vertex shape.

The normalization (3.4) of (3.3) distributes the associated surface current approxi-

mately uniformly around the junction regardless of its shape; it can be shown that

the surface currents on SB at the junction are capable of representing any angular

variation of the junction current.

2. The function AJ(r) vanishes at the edge opposite to the junction vertex; thus no

charge is deposited along this edge.

3. The surface divergence of AJ(r), which is proportional to the surface charge density,

is given by

2K nn7hY2 , in s2

V--AJ(r) 1 (3.5)WF_- ' ns-

0 ,otherwise.

4. The current flows parallel to the two edges of SnJ1+ common to the junction vertex.

This implies that no line charges are deposited along edges of S .

The current on the surfaces SB may now be represented as
NB Nj

J(,.) ]E Ia (n) + n I a(r), r on SB, (3.6)
n=1 n=1

and the total axial current on the wire may be represented as
Nw Nj

(r)i t I'AW(r) + E I'AJ(r), r on Sw, (3.7)
n---- n=1

where No, 0 = B, W, or J is the unknown number of bodies, wires, or junctions, respec-

tively. Note that according to (3.2) and (3.5), the surface divergence, and hence the charge,

is constant or. all body, wire, and junction subdomains.
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3.2 Testing Procedure

The next step in applying the method of moments is to select a suitable testing

procedure. Referring to Fig. 3.5, we enforce the integral equation on SB by integrating the

vector component of (2.2) parallel to the path from the centroid of S!+ to the middle of

the edge £ and thence to the centroid of S!-. Similarly, we enforce the integral equation

on Sw by integrating the vector component of (2.2) parallel to the path from the centroid

of S W+ to node m and thence to the centroid of Sw-. At a junction (c.f. Fig. 3.6), we

first integrate the tangential electric field along a path from the centroid of each junction

triangle to the junction, and then along the wire axis to the center of the attached wire

segment. The resulting equations are then combined into a single equation for the junction

* by weighting each with the associated triangle vertex angle, and summing the results for

each junction patch. For all path integrals, E' and A are approximated along each portion

of the path by their respective values at the centroids. The integral on Vt reduces to a

difference of scalar potentials at the path endpoints, thus tie eliminating the requirement

implied in (2.2) that ' be differentiable. Wita -y = B, W, or J, as the vector path

segment, we thus have

jw [A(r"+) .+ +A(r-) .tr - ] + [4(r) - t(r"+) ]

= [E'(,7+).e + E'(,Y).dI , (3.8)

*. m=1,2, ... ,N, -y=BorW,

and

a . j e t (r) + M=
• I J+ +) + jwA(r = +

= a Nj E (vm) + E'(rj)t -, (3.9)
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Figure 3.5: (a) Testing path associated with the mth node of wire. (b) Testing path
associated with the mth edge of body.

25



6

lm

S_26



m =1,2,...,Nj.

Using the source expansion defined in (3.6) and (3.7), we obtain from (3.8) and (3.9) a set

of linear equations whose solution yields the unknown current coefficients.

3.3 Evaluation of Matrix Elements

Substituting the current representations (3.6) and (3.7) into (3.8) and (3.9), we obtain

an N x N system of linear equations, where N - NB + Nw + Nj, which may be written

in matrix form as

=zWB] [zwwI [ZWJ] J11  [yW] (3.10)

VB] [JW] [Z'j] J I J L [VlJ]
where the elements of the submatrices are given by

2,. = J. [A~'+-+ t '-+ + Ae9- r '] + [s' P - §7], , 7 J, (3.11)

- Gm" (jwA1 Nt. + min) + jwAJO- tj- + §JO-, (3.12)
In =1

- An(r. ), -)

AJO+ AP vJ+, OJO+ 00 j+)

min An(r), min ',(rn ), (3.13)

Ar =.L r )----dSe (3.14)

V - A=. (r')!--dS'  (3.15)
n j4ffwe fSD
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B ,=B,WorJ P= W,orJ (3.16)

and

= [E'(r+).+ + E(r7)*1;j -y#T, (3.17)

S 1 N.m

St . IE'(j1).tj1 + E'(rj (3.18)
1=1

For plane wave scattering problems, for example, we may set (c.f. Fig. 3.7)

E =(r) = (Egii + E.ki)e j k -r (3.19)

where the propagation vector k is

k = k(sin O cos O + sin O'sin 0'0 + cos ei) (3.20)

and (6', ') define the angle of arrival in the usual spherical coordinate convention, and

can be expressed as

0' = cos 8' cos iO' + cos 8' sin 0' -sin 6'i

= -sin Oi + cos i'.

For antenna radiation problems E = E = 0, in this case the wire segments attached

to node (junction) m may be thought of as separated by a gap across which the voltage

VZw (VJ) is specified.

Solution of the linear system of equations (3.10) yields the set of unknown current

coefficients used in the representation of the surface, wire, and junction currents, (3.6) and

(3.7). Once the surface current is known, the scattered field or any other electromagnetic

quantity of interest may be readily determined.
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Chapter 4

Numerical Results

In this chapter numerical results such as the surface current near a junction or the

input impedance of a monopole or far field pattern are presented for different junction

configurations. The geometries considered include wires attached to a smooth surface, an

edge, and a vertex.

4.1 Calculation of Current and Charge Distributions

Fig. 4.1 illustrates the current distribution near the junction between a circular cone

and a monopole attached at the vertex and inclined at an angle of 600 to the axis. The

length of the monopole, the height of the cone, and the diameter of the cone base are

all a = 0.333U. The radius of the monopole is r = 0.001a. The result is compared with

the magnetostatic current distribution on an iiite cone with a semi-infinte filamentary

current attached to its vertex [24]. The current filament is also inclined at an angle of 600 to

the cone axis. Since the magnetostatic result gives the shape but not the magnitude of the

current distribution, a complex normalizing constant is chosen so that the magnetostatic

current interpolates the dynamic result at one point. Also shown is the uniform distribution

that would result from taking the current in the wire and distributing it uniformly about

the cone.
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Fig. 4.2 illustrates similar quantities near the junction of a circular disk and a monopole

attached at the center and inclined at an angle of 300 to the disk axis. The length of the

monopole, and the radius of the disk are a = 0.333A. The radius of the monopole is

r = 0.O01a.

Figs. 4.3 and 4.4 show the computed current distributions on a circular cylinder with

monopoles attached to the center of each endcap and driven at the attachment point.

Measured results by Cooper [6] are shown for comparison. The diameter and the height

of the cylinder are 0.25A. The wire radius is 0.007A and the lengths are 0.125A and

0.25A in the two figures, respectively. Similar results are shown in Fig. 4.5 for a cylinder

whose diameter and height are 0.5A with a wire length of 0.125A. Charge distributions

corresponding to these three cases are shown in Figs. 4.6, 4.7 and 4.8.

3

6

I
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4.2 Calculation of Input Impedance

4.2.1 Wire mounted on a smooth surface

Fig. 4.9 shows the input admittance as a function of frequency for an monopole at-

tached to the center of a flat plate and fed at the attachment point. The length of the

monopole is 0.421 m, its radius is 0.0008 m, and it is oriented normal to the 0.914 m

square plate. The results are compared with those calculated and measured by Newman

and Pozar [15].

In Fig. 4.10 is shown the input impedance of a monopole of length h = d and radius

a = 0.0165d mounted on a sphere of radius d as a function of the frequency. The results

are compared with calculations by Bolle and Morganstern [3], [41.

In Fig. 4.11 is illustrated the input impedance versus frequency of a monopole inclined

at an angle of 600 from normal and attached off-axis on a circular disk. The results are

compared with measurements by Main and Catedra[12]. The agreement is very good

except for the reactance at the highest frequency measured.

Fig. 4.12 illustrates the input admittance of a monopole mounted near the corner of a

box on an infinite ground plane. The box is a 100 mm cube and the monopole length is

60 mm with a radius of 0.8 mm. The measured results of [25] on a ground plane of 780 mm

x 780 mm are also shown in the figure. Also shown are results computed by replacing the

monopole with an equivalent tape model and then modeling the structure as in [2].

3
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4.2.2 Wire mounted on an edge

Fig. 4.13 shows the input admittance as a function of bend angle for a monopole attached

to the edge of a plate and fed at the attachment point. The length of the monopole

is 0.25AI, its radius is 0.001\, and it is mounted at the center of the longer edge of a

0.4\ x 0.5\ rectangular plate. The reactance is not in agreement with [18], in which

both an exact Green's function to model the current in the neighborhood of the junction

and a rectangular patch model was used, but several different calculations have been used

to validate the present results. First, as shown in Fig. 4.14, the magnetostatic current

distribution at the junction was calculated and used to deduce weighting coefficients for

the junction triangle basis functions for representing the angular variation of the junction

current. However, this produced an insignificant change in the result. Secondly, the wire

was replaced by equivalent tape models, shown in Fig. 4.15, in which the width of the

tape is four times the radius of the wire antenna [26, p. 20], and either 1, 2 or 3 patches

are used at the junction to connect the tape to the surface. As Fig. 4.14 shows, as the

number of patches increases, allowing the current to flow more freely in any direction on

the plate, the results approach those of the present method. Finally, we also observe that

as the wire angle a approaches zero, the wire and ground plane configuration approaches a

quarter wavelength section of open circuited transmission line, whose input resistance and

reactance should approach zero. The present results, contrasting to those of [18], more

nearly follow this trend.

4.2.3 Wire mounted near or at a vertex

Fig. 4.16 illustrates the variation of the impedance as a function of attachment position for

a quarter wave monopole mounted near or at a corner of a 0.4O square plate. In Fig. 4.17,

the same monopole is attached at or near a corner formed by three 0.4\ square plates. The

antenna is attached normal to the top plate and driven at the attachment point. Its radius

49



is a =0.0015A. The results for these two cases are compared with calculated and measured

results by Newman and Pozar [15]. The agreement is good in all three cases. Since the

present method, in contrast to (15], should also apply for the wire located directly at the

plate corners, we give results for these cases also.

4.3 Calculation of Far Field Patterns

Fig. 4.18 shows the radiation pattern of a wire of length 0.25A and radius 0.007A

attached to a circular cylinder with diameter and height 0.25A. Figs. 4.19-4.21 show

similar results for cylinders of various sizes. The measured results shown for comparison

are by Cooper [6]. In Fig. 4.22 is depicted a 0.25A monopole mounted near the corner of a

square plate with 1.OA edge length. The results of Pozar [18] are also shown for comparison.

Figs. 4.23 and 4.24 show a 0.25A monopole mounted on a sphere with radius 0.2A and O.3

respectively. The results are in good agreement with those of Tesche [4].
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Chapter 5

Summary

The electric field integral equation (EFIE) is used with the moment method to develop

a simple and efficient numerical procedure for treating problems of scattering and radi-

ation involving arbitrarily configured and arbitrarily connected bodies and wires. Three

triangular-type basis functions are used to represent the physical currents on bodies, wires,

and wire-to-body junctions. A junction basis function is developed which appears to be

applicable to any junction configuration. Numerical results, which include comparisons

with calculations and measurements found in the literature, illustrate the versatility, ac-

curacy, and efficiency of the method for various junction configurations, including wires

mounted on smooth surfaces, at edges, or at vertices.
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Appendix A

Computation of Potential Integrals
for Wire Basis Functions

The basis function associated with current crossing the nth node of a segmented wire

model is given by (3.1), and its divergence is given by (3.2). Since dS' = a d4 de', the

vector and scalar partial potentials due to a unit current source associated with the nth

node are given in terms of (3.14) and (3.15) as (c.f. Fig. 3.3(a))

A-(e) = A(t) K(f, f) de

- ~4Is4,+ hWK(e,t) de + K(, I') de]~ A1

4W(1) - .A"(t) K(1, e) de

n 1 r ++1r1
= I4, ,~l + h K(t,t) dt' + 1 K(e,t') , (A.2)

j4irwe S:J5 W hw (.2

where t is arc length measured from a segment endpoint along the axis of the wire segment

in the positive current reference direction, and
1fe - j kR

K(e, t) = R dO, (A.3)
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is the so-called ezact kernel in which R is the distance between observation point r and

source point r' on the wire surface.

A.1 Integrals Associated with a Segment

It is computationally efficient to simultaneoudy compute all potential integrals associated

with a given segment S w , (either Sr + or S:'-). The vector and scalar potentials associated

with a segment involve the following three integrals:

1 'h s K(s,s') ds', (A.4)

12 = (h - s')K(s,s') ds', (A.5)

13 = K((,,s') ds', (A.6)

where s' is a local segment arc length measured from the end of the axis of the source

segment, and h is the length of the segment. The first and second integrals above are

involved in the vector potential computation and the third is related to the scalar potential

calculation.

A.2 Treatment of Singularities in Wire Potential In-
tegrals

In numerical evaluation of (A.4)-(A.6), two cases are considered:

(a) The observation point is at least two segment lengths away from the source

segment.

(b) The observation point is less than two segment lengths away from, or possibly

on, the source segment.

For case (a), the so-called reduced kernel,
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e- -ikRr

K,(,,,J) = (A.7)

where

,= Ir - rI1 +a2 (A.8)

and a is the source segment radius, may be used in place of (A.3) to eliminate the numerical

integration which computation of the latter implies. With this replacement, (A.4)-(A.6)

may be numerically integrated by Gaussian quadrature.

For case (b), the kernel is rewritten as1-k -/ 1 r'
K(s,s') = 1 do + f do]. (A.9)

The first integral of (A.9) now has a slowly varying integrand in which the reduced kernel

approximation can be used (i.e., R is replaced by R, of (A.8)) to obviate the need for

double integration:

r e - j kR d- 1 e- j kR, - 1
2iJ-R (A.10)

The integral resulting from substituting (A.10) for this slowly varying part of the kernel

in (A.4)-(A.6) can be easily evaluated numerically by Gaussian quadrature.

The second integral in (A.9) contains the rapidly varying part of the kernel for ob-

servation points close to or on the source segment. Often the reduced kernel is used for

this term as well, and its contribution can then be determined analytically. For segment

lengths smaller than about five times the wire radius, however, this approach is not suffi-

ciently accurate. On the other hand, it is easy to show that the second integral in (A.9)

is expressible in terms of the complete elliptic integral of the first kind. To demonstrate

this, we define a number of geometric parameters associated with the segment and the

observation point in Fig. A.1. The distance between observation point r and source point

r, is
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Figure A.1: Geometrical parameters associated with integration of a wire basis function.
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R I- r'[ - - 1 )2 + p2 + a2 - 2pacos, (A.11)

where

,= (r, - r).i, p = vfI-r,Is - am +am. (A.12)

Vector i is the unit vector pointing in the direction of the source segment, and am is

the radius of the observation segment. Derivation of the relationship between the singular

integral of (A.9) and the complete elliptic integral of the first kind may now be summarized

as follows:

1 1 1_

1 fr" dO

- - 2iJ- f(sW - s)2 + p2 .+ a2 - 2pa cos

W1 dO

27r V(sm-s)2+P2+a2+2pacos

2 1 [d d, ~~ ~ ~ ( - 4p- (,,_,)+ +) / _sinS

7r (S:mS 8)2+ (p +)2fo V1- #2 Sin 2 ~

2 _ 2 K (O ) _ =- K (), (A.13)

7 (,,_)+(p+,)-

where

, /2 4pa (A.14)

2- s,) + (p + a)2 '

and K(3) is the complete elliptic integral of the first kind, which can be computed from

(17.3.34) of [27].
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The elliptic integral becomes logarithmically singular when the observation point ap-

proaches the source point. It is difficult to numerically evaluate the integrals (A.4)-(A.6)

in this case, and hence this singularity is first removed from the integrand by subtracting

from it a singular term to which it is asymptotic, and then adding back the analytically

evaluated contribution of the removed singular term. For extremely thin wires, better

accuracy of the numerical integration is obtained if the singularity is extracted only in the

interval a' E [s , s], where s. = max(O, s,. - 15a) and 9,, = min(h, sn + 15a). For

source points near observation points, the elliptic integral behaves as ((17.3.26) of [27])
i 2

KCB) - ir(p +a) 4

2 i (/(.. -. 8)2 + (p-a)'2

*_ - ir(p + a) k 4(p + a) (A.15)

The last term is extracted from the kernel for numerical integration, and its contribution

is determined by integrating it analytically. The resulting procedure is summarized in the

following section.

A.3 Summary of Computation of Wire Potential In-
tegrals

The computation of potential integrals associated with a wire segment, as given by (A.4)-

(A.6), is summarized as follows:

For an observation point at least two segment lengths away from the source segment, the

kernel is replaced by the reduced kernel approximation, (A.7) and (A.8), and the integral

r ph e -Jk&"

* = f(a') ds' (A.16)

is evaluated by Gaussian quadrature.
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For an observation point less than two segment lengths from the source segment, the

integral of the exact kernel is decomposed for evaluation as

I, A ,( ' 1] ds'

+ Ua +( J '+ ) fi(s') -L~ K(,P) dst

S + f (') [ K(#) + 2In ds
pa. P p+a 4

2
eIr, i - 1,2, or 3, (A.17)

p-Fa

where

.IS n'~ s + (p -a) 2  s
= J= . h ' 4 (p+a) d'

1S,2 m+ (p-a) jIn -(-m - a')' + (p -a)2] -2 2 In[4(p+a)]

-
4 m(p - a) tan' ( - S - s'(S' + 2s) (A.18)

1.3 In~ (~ SI) + (p - a)2\. 4(p + a)ds

(S'(- ( n) ((s a-s)2 + (p-a)2  _
I2 [ 16(p+ a)2  2]

- (p - a)tan-' ( : -') (A.9)

\a a 1-a 9"-°1A.9

1.2 1.3 1.1, (A.20)
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and where X, s4, and p are defined in (A.8), and (A.12), and

fl (S') =I. f2 (S') (h ') f3(s') =1

The quantities s. and s, are defined as

S, = max(O, 8 m - 15a),

a,,= min(h, j. + 15a).

If s, is located outside of the source segment then (j + in (A.17) is replaced by

(J." ) -U 
All the integrals in (A.17) have smooth integrands and can be numerically integrated

by Gaussian quadrature.
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Appendix B

Computation of Potential Integrals
for Body Basis Functions

U

The basis function associated the nth edge of a surface patch model is given by (3.1),

and its divergence is given by (3.2). The corresponding vector and scalar partial potentials

due to this basis function are given in terms of (3.14) and (3.15) as (c.f. Fig. 3.3(b))

-- B e-ikR

An (r) +S An (r') d

e k R 1 ,.. 'j ( . 1

47r h + R B+ "p S . dS , (B.1)

,B 1R dS'
n se +e-( V j, An (r) dS

j4irwe sf s~ R

S= 4rwe +I+ ekR + 2 e-ikR (B.2)

where

R =r - r'I.

It is computationally efficient to simultaneously compute all the potential integrals asso-

ciated with each patch SB (either S s + or S!-). The vector and scalar partial potentials
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Figure B. : Geometrical parameters associated with integration of body and junction basis
functions.
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evaluated at observation point r due to a basis current directed outward across the ith

edge (i = 1, 2, or 3 ) of the qth triangular patch, SBq, are defined as (c.f. Fig. B.1)

B ~ ir p'i -kR

A-, -( ± , R dS', (B.3)

1 Is 2 e-jlR
(r)= .4 1 hdS. (B.4)

j47rwe SB hR d'

If the current is directed inward across the ith edge, the right hand sides of (B.3) and (B.4)

are multiplied by (-1).

B.1 Treatment of Singularities in Body Potential In-
tegrals

* The integrands of AP(r) and D(r) are singular at R = 0 corresponding to an observation

point coincident with a source point When r is not close to the source triangle, one

can easily evaluate (B.3) and (B.4) by numerical quadrature as discussed in Appendix

E. Thus when r is close to or on the sourc-e triangle, extraction of the 1/R behavior is

necessary before numerical integration is performed. We can represent both of these cases

by introducing a closeness parameter o(r) defined as

0 ,if distance Rc is larger than the longest edge of SBq
) -(B.5)

1 , otherwise.

where Rc is the distance from the centroid of the source triangular patch to the observation

point. Thus we write (B.3) and (B.4) as

Ai 47FhJSBq A q6 ek_ O(t) dS ~r ~q~ S](B.6)

* and

1 2

)= j4-rwe ,J R dS' + a(r) - dS]. (B.7)
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The integrand of the first integral of (B.6) and (B.7) is always slowly varying and can

be satisfactorily integrated numerically via the methods of Appendix E. The remaining

integrals in both (B.6) and (B.7) can be integrated analytically, and are given as [28]

ta1  07 R4\1I
g. I $ = 0,P . , in id ta - 1  o i

Isa W ,i i 1-R + IT () d

tan-()2 + idiRT (B.8)

and

-I f !dS' = P'
gi dS=

J~qR J~q R

p' p dS + (p_ pi) j -dS'
S8q R q

- i ,+) In + ltRt-l'R.+ (p- -p,) g. (B.9)
i iI I I +( i .

For numerical evaluation of (B.6) and (B.7), it is convenient to express all their terms

in the area coordinates of Appendix E. Accordingly, using (E.5), the position vector p'i

relative to vertex i is expanded in terms of the adjacent edge vectors, which act as basis

vectors in the local coordinate system on patch Se:

PIi = ci+lti-i - 6-1 t +1, (B.10)

where the edge vectors ti*l are defined in Fig. B.1. Substituting (B.10) into (B.6) and

using (E.7), we can express the vector function AP(r) as

A(r) - ' 4 [(AP+ + o(r) g+) t,-. - (AP- + o(r) g-) t,+,] , (B.11)

47rhi

where

AP= 2A L1 i Cizl C R - d& d, (B.12)

71



.• • . . .. . . . . .

* and

9t 2A j j ±j d (B.13)

The singular integrals g* in (B.11) are related to the vector gi of (B.9) as may be seen by

substituting (B.10) into (B.9) and comparing to (B.13). We obtain

g, = g i-I - gr ',+I, (B.14)

where, from (E.10), we have

9 = - hjj "gI, (B.15)

and this result, together with (B.8) and (B.9), allows all but the terms AP± in (B.11) to

be evaluated.

Similarly, the scalar function kD(r) can be expressed as

• (, = 1 2
= j4____ 2 [1 + o(r) g8], (B.16)

J47-wc hi

with

I = 2A eikR - ()d') + d~ , (B.17)

0 0 R

and g, is defined as in (B.8).

The remaining terms in (B.11) and (B.16)-the nonsingular contributions to the vector

and scalar potentials, AP± and I, respectively-are computed by numerical quadrature as

0. discussed in Appendix E.

B.2 Summary of Computation of Body Potential In-
*- tegrals

The vector potential integral associated with an edge as given by (B.3) is obtained by

lubstituting (B.8), (B.9), and (B.15) into (B.11) and is summarized as follows:

'07
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A (r) = - [(2Aj'' ,+i - a(r)d ild -a(r) h i-~ e 1-jR
- ( j1 j1- 2I I -( h.1 ,x ) e] I(.8

-jR

where o(r) is defined in (B.5).

The scalar potential integral associated with face SBq in (B.4) is evaluated by substi-

tuting (B.17) and (B.8) into (B.16) and the result is summarized as follows:

1 1-(er)R-a(
S()= - -1 - [2jM'flk~c7T d$,~j d~j + a(r) g. (B. 19)

The integrals in Eqs. (B. 18) and (B. 19) are well-behaved and may be integrated numerically

via (E.12).
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Appendix C

Computation of Potential Integrals
for Junction Basis Functions

The basis function associated with current entering the nth junction of a wire/body

junction model is given by (3.3) and its divergence is given by (3.5). The vector and scalar

potentials due to a unit current source associated with the nth junction may be given in

terms of (3.14) and (3.15) as (c.f. Figs. 3.4 and B.1)

A(r) k (') e-jkR dS'

47r _ Aw(r') ---- dS' + Kni i J+ A (r') -R dS'

(hJ+ 2  e-jkR
s n,, AJ (r,) dS' (C.1)

J (P' + . n'~ )2 R J

1w n -,R
- j 4

71rw I++sj (v.A(r) R dS

C-kR Njin 2Kn1  e-jkR
j47rwe -R dS'=+ ,, R d]. (C.2)

All the integraas in (C.1) and (C.2) cxcept the last integral in (C.1) are evaluated in

Appendices A and B. For the remaining integral, we first assume that the qth junction
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surface patch has a junction at vertex i (a local index) in the patch. Then the integral can

be written in the form

A -,.F ,, A, ( dS'

Sh (p,.,) 2  dS'. (C3)

47r JIpi.Igi,)2 R

where Ki is the weight factor for the patch and the remaining quantities are defined in

Fig. B.1. Evaluation of this integral is considered in the following section.

C.1 Treatment of Singularities in Junction Potential
Integrals

The integrand of A4 (r) in (C.3) is singular when the source point is at junction vertex (i.e.,

when p'i = 0), and when an observation point is coincident with a source point (i.e., when

R = 0). Thus when r is close to the source triangle or r' is close to the junction vertex,

extraction of the dominant singular or nearly singular form of the integrand is necessary

before numerical integration is performed. To discern the behavior of the integrand near

these singularities we expand it in a Taylor series about each singularity.

At p'i = 0 we expand terms of the integrand in Taylor series in p'i and then combine

them to obtain the Taylor series for the integrand as a whole. For example (c.f. Fig. B.1),

we first note that

R = I - p',l = 2Ai2 + p2 
- 2/.p',. (C.4)

Since for sufficiently small p',, it is clear from Fig. B.1 that A 2 > p -2 2R. p'i, and

hence R may be expanded in the series

1 p 2 2p',.R 1
R A 1 + 2 2 +.... (.5)
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Thus the exponential in (C.3) may be expanded as[p,2
e- jkR  e- jk  - jk i - 2i + (C.6)

and hence

C-' kR e- r [k( R. . p._,/_!k 1+ (k + +/ +. (C.7)

Finally, we have

I e-JkR

(P"')2 R = , 
(C.8)

where

fp (Pi k [ 1 P+ + Ri] (C.9)

All the higher order terms in the series vanish as p --, 0.

For the singularity at R = 0, we expand the integrand in a Taylor series in R.

Since (c.f. Fig. B.1)

P!, - R - R (C.10)

then

P',h A R.h 1 hi (C. 1)

and therefore

1 0%0 1 1 + 2 + (C .12)

(p, i I2 - k) 2  hi

Since

e-jkR 1 k 2R
R R 2 +
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we have

e -kR P- + 2R h

1 [ + 2[(p -P)-(p-p')] R.., ]
(R,..) 2 IR + (Ai.£,)R "'

" 1 . P- + 2(p-pi)(Ri-p'j)-hi .. ] (C.14)= (A - ,)2 -- R (R, - ,)R I

in which we have used the following relations:

p', = A - R = (p-pi-(p-p'),

p p'IR*hi-- 0 as R---0 since Ip-p'l<R.
R

All the higher order terms in the series are bounded and well-behaved as R -0 0, and since

R., = ( i - p',).h, = (p - p, - ,o,. h,,

we define

R (..) 2 [ + 2(p-p)[(p-p)-p'j]- (015)

With the expansions of f, and fR in (C.9) and (C.15), then (C.3) can be rewritten as

A" (r) = ±- [Ji F dS' +L f, dS' + o'(r) J5qfR (0.16

4
where

F = P e- f (0.17)
(p, .,)2 R

and o(r) is defined in (B.5). The integrand of the first integral in (C.16) has the singularity

at P'i = 0 removed, and-when the observation point is near the source triangular patch

SB9-has the 1IR behavior removed. The integrand is thus bounded and continuous,
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and the integral can be integrated numerically by numerical quadrature as described in

Appendix E. At R = 0, F is indeterminant and hence, for numerical purposes, is replaced

by its limit,

lim F - P' [k+ 1 +jkR, (2 + jkR,)]. (C.18)i: n~-0 (P'hi)tj+ Ri

The second and the third integrals of (C.16), as shown below, can be integrated analytically.

C.2 Efficient Numerical Evaluation of Integrals

For efficient computation, we rewrite the vector integral equation (C.16) and (C.17) in

terms of adjacent edges which act as basis vectors in a local coordinate system. Since

P hi = hi( 1 - i), (C.19)

from (B.10) and (C.16-C.18), we have

A'(r) = ,( A'+ li,_ - A- 1i+1 (C.20)

and

F = F + li-I - F- 1i+1, (C.21)

where

- J' J Ft dS' + f,'P dS' + a(r) ~jfR dS' (C.22)

and

+ 1 i+ e-
jkR

F± (-7(r) f' f -, (C.23)
h (1 -,R R
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with
h2 1  i~l  e -jkR ' (  ) i-1]

_- 1 : e~kR 1 + (jk + ? - A , (C.25)

and

f R 2R , [ i)l -- ( p -hi l

,,. [(p - Pi)-( , - &,-+ 1)]} (C.26)

The nonsingular integrand F + of (C.22) can be integrated numerically by Gaussian quadra-

ture as described in Appendix E. The remaining integrals in (C.22) are singular and may

be evaluated analytically as follows. From (E.7), we note the results

f i-1 dS' = 2Ai d1 i = Ai (C.27)
. J5Jq (1 - i)2 0 0 (1 -i)2 d Ai,

Similarly,

(1-±) dS' A -i1i- dS' Ai- (C.28)s-,. (1 - 23 Is, ( )
where Ai is the area of the triangular patch SJq . From (C.25-C.28), we now have

Ai 1 fe-jkRi ( 1 + jkR,
fJjqdP - - 6 R+

(C.29)

Jqf(R. . h,){ ,, R dS' - h, h ;

*" h," [(P - Pi) is dS' - Ii-, IJq ' dS'+ -- i+l - dSI (C.30)Jq RS q R S R 1

From (B.8), (B.9), and (B.15), the singular integrals (C.29) and (C.30) both can be ob-

tained explicitly.
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C.3 Summary of Computation of Junction Potential
Integrals

The vector potential integral associated with a vertex of a junction triangular patch as

given by (C.3) is obtained by substituting (C.22-C.23), (C.25-C.26), and (C.29-C.30) into

(C.20) and is summarized as follows:

Aj'(r) -Kih( A" _ -A (C.31)

where

_ 2A ,[ (e-jkR

A+  o 0 (1- )2 R

e- j kR'  1

-Ri [ + (jk ± - )i+,+,i 1 - - j)

2 _ ____ (p -p)
- "(r) ( . h )2 R j . h- 1l

j 2[(P-PA) - it- d~~i2+1)}}

+ A{e - j kR ( 1 + jkRi

+ 2)R y-h,) 2  { g; )hP

(R hi_ h 1 L

__ " P i)g + p,- h- + 1i+L i (C.32)

in which a(r), g., and gi were defined as (B.5), (B.8), and (B.9).

8
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Appendix D

Computation of Far Fields

We define a normalized far electric field £ as

6(r) = lir r eJ k E'(r) (D.1)
0-*O

* in which the radial phase and amplitude dependence of the far field is removed, leaving

only an angular dependence, and where, in the far field,

E(r) = -jw [A(?) - A(r) - i.]. (D.2)

The unit vector i points in the direction of observation of the far field, and is given by

r = - sincos+ j sin 0 sin +i cos 0.

In the far field, the vector potential A(r) reduces to

A()= e-jkr fs J(r') ejik 'r' dS' (D.3)
47r r iS

which is evaluated in the same manner as (A.1), (B.1) and (C.1) except that the kernel

is replaced by ej k*'. The various forms that the integrals take on are summarized

in the following sections.
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D.1 Far Field Vector Potentials for Wire Basis Func-
tions

The vector potential in the far field due to a unit current source across the nth node of a

wire is given as

A'(e) Aj(e) ek r ' df'n 4r r r n

SW~ L+~;~e?+ W_ h"- de.4]S47r r n wSI

This integral may be evaluated in closed form, but it is generally more efficient to evaluate

it by Gaussian quadrature.

* D.2 Far Field Vector Potentials for Body Basis Func-
tions

The vector potential evaluated in the far field point due to a basis current directed outward

across the ith (i = 1,2, or 3 ) edge of a triangular patch SBQ is given by

Se dS', (D.5)

which, using (E.5) and (E.7), may be expressed as

A ) 47r _r - [As+ .,_ - Ai t,+], (D.6)

where

A *= j' Cj , 6jkf~??r dC,, . (D.7)

The integrals in (D.7) may be evaluated in closed form, but it is generally more efficient

to evaluate them by numerical quadrature as described in Appendix E.
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D.3 Far Field Vector Potentials for Junction Basis
Functions

In the far field, the vector potential integral associated with a vertex of a junction triangular

patch as given in (C.3) becomes the following:

A'(r) = -!--Ki hi e r S *.' dS (D.8)
4ir, (p', .,, d' D

Note that there is still a singularity at p'i = 0, i.e., when the source point is at the

junction vertex. The treatment of Appendix C may be adapted to remove the singularity

from the integrand with the result that the final form of A4" in the far field becomes

(r )-= + Ii-_I - A, + t,+,], (D.9)
47r r

where

41. jk1 r i0-ri d''2Id

+ eto Jo (1i~)2 d 1+ oik'."rio'/o'-"di~ ~

01 (1 I _ _ _

f1 - [ ' -1( di d, + 2 (D.10)

The integrals in the last line of (D.10) may be evaluated by numerical quadrature as

described in Appendix E.
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Appendix E

Local Coordinates and Numerical
Integration on Triangular Patches

In this Appendix, we introduce a convenient set of local coordinates defined on triangular

patches. This set of coordinates is useful for representing both scalar and vector functions

,. on triangles and for performing numerical integration over the patches.

E.1 Normalized Area Coordinate System

We introduce the so-called normalized area coordinates C, (i = 1,2, 3), defined as

A, (E.1)

where the area A, is the area of the triangle formed by point r and edge i (Fig. E.1), and

A is the total area of triangle S q. Hence

3 = 1. (E.2)

Clearly, only two of the coordinates are independent, and the third can always be elimi-

nated via (E.2). The transformation between the global and local coordinate systems is

summarized by the relation

r = ,+Ir,+i + -i? -I + Cir, (E.3)
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0

CC

Figure E.1: Definition of local coordinate system.



where the position vector r and the vertex vectors ri, r2, and r3 are given in the global

coordinate system. Using (E.2) to express the position vector in terms of the two indepen-

U dent coordinates C±1 and Ci, and noting that ri, - ri: = fl:tI and riF - ri = ti:E, we

have

=- Ci)ri:1 + tilril + tiri

- F(Ci±Ii - Cit±a) + r7 il. (E.4)

A frequently used result is that

I P r'- r i

= Ci+iri+i + CiIr- + (C, - 1r

= ,+lri,+l + i-Ir*,- - (Ci+l + Ci+,)ri

• = C+ti-I - i-1 t i+1 . (E.5)

From (E.4) we also have

dS' = I X _
±
_

'
_

) 0"(17)Id

= Ie, x Ii I d~id.1 dd

= 2A di±l dCi. (E.6)

From (E.5) and (E.6), it follows that surface integrals over an arbitrary scalar function

f(p'i) on Sq can be expressed in terms of local coordinates as

Lq f(p',) dS' = 2A J j (ci+ ,  - i,_t,+1 ) dL,±l dC,. (E.7)

E.2 Expansion of Tangent Vectors on a Triangle in
Terms of Edge Vectors

Any tangent vector in S q can be expressed in terms of a pair of triangle edge vectors, which

act as basis vectors in the local coordinate system. For an arbitrary tangent vector f, for

example, we wish to write it as
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f = f+ li- - f- t+ 1, (E.8)

i.e., we wish to determine its expansion coefficients f+ and f- in terms of (non-orthogonal)

basis vectors Ii-1 and 1j+j. This is easily done once we notice that (c.f. Fig. E.2)

hi-1i = 0, (E.9)

(i.e. 1i and hi are biorthogonal) where hi = hihi. Hence, from (E.8) and (E.9), and since
2

hj±• ti:l =Thi+1,

we have

hi~l f f+ hizjl ti:Fl f h±f = • ~~z = -f hi+1.

Thus

(E.10)

and finally, from (E.8),

( i- +i+l hi - If = hji + hi - 1 f(E1)

where the quantity in parentheses is the identity dyad in local coordinates, multiplication

by which expresses a tangent vector in terms of the triangle's edge vectors. Since the

vectors til in (E.8) are constant, a frequent use of this result is to reduce an integral over

an arbitrary vector f to two scalar integrals of the form of (E.7) over the components f.

E.3 Numerical Integration over Triangular Patches

Numerical integration over a triangle can be accomplished in terms of the area coordinates
by the following rule:
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Figure E.2: Definition of triangle edge and height vectors.
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~j=1

* where N is the number of evaluation points of the quadrature. Appropriate weight coeffi-

dents wj and coordinates ((Cj)j, (tj j)j) of points at which the function must be evaluated

for Gaussian schemes are given in [29]. Only one-point, three-point, and seven-point

schemes (depending on the ratio of distance between observation point and centroid to the

maximum edge length of the source triangular patch) are used in the code JUNCTION,

and the corresponding weight coefficients and corresponding coordinates are presented in

Tables E.1-E.3.

18
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Table E.I: Weight Coefficients and Local Coordinates for One-Point Gaussian Quadrature
on a Triangle.

j wj ( i)j (i+,)

1 0.5 0.333333333333333 0.333333333333333

Table E.2: Weight Coefficients and Local Coordinates for Three-Point Gaussian Quadra-
ture on a Triangle.

1 0.16666666666667 0 6 6 066 66

1 0.166666666666667 0.666666666666667 0.166666666666667

2 0.166666666666667 0.166666666666667 0.666666666666667
3 0.166666666666667 0.166666666666667 0.166666666666667

Table E.3: Weight Coefficients and Local Coordinates for Seven-Point Gaussian Quadra-
ture on a Triangle.

j wM (Vi~l)j

1 0.1125 0.333333333333333 0.333333333333333
2 0.062969590272413 0.797426985353087 0.101286507323456
3 0.062969590272413 0.101286507323456 0.797426985353087
4 0.062969590272413 0.101286507323456 0.101286507323456
5 0.066197076394253 0.470142064105115 0.470142064105115
6 0.066197076394253 0.470142064105115 0.059715871789770
7 0.066197076394253 0.059715871789770 0.470142064105115
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